Exact Renormalization of Super-Diffusion on the Tower-of-Hanoi Network

STEFAN BOETTCHER1, BRUNO GONÇALVES2, Physics Department, Emory University — We propose the Tower-of-Hanoi network as a hierarchical, small-world network possessing both, geometric and long-range links. Modeling diffusion via a random walk on this network provides a mean-square displacement with an exact, anomalous exponent $d_w = 2 - \ln(\phi) / \ln(2) = 1.30576\ldots$. Here, $\phi = (1 + \sqrt{5})/2$ is the “golden ratio” that is intimately related to Fibonacci sequences. This may be the first solvable model with super-diffusion for any fractal structure. This appears to be also the first known instance of any physical exponent containing ϕ. It originates from an unusual renormalization group fixed point with a subtle boundary layer. The connection between network geometry and the emergence of ϕ in this context is still elusive.

1http://www.physics.emory.edu/faculty/boettcher/
2http://www.bgoncalves.com/

Stefan Boettcher
Physics Department, Emory University

Date submitted: 19 Nov 2007

Electronic form version 1.4