Stochastic Time-Dependent Current-Density Functional Theory1

ROBERTO D’AGOSTA, University of California - San Diego

Static and dynamical density functional methods have been applied with a certain degree of success to a variety of closed quantum mechanical systems, i.e., systems that can be described via a Hamiltonian dynamics. However, the relevance of open quantum systems - those coupled to external environments, e.g., baths or reservoirs - cannot be overestimated. To investigate open quantum systems with DFT methods we have introduced a new theory, we have named Stochastic Time-Dependent Current Density Functional theory (S-TDCDFT) \cite{1}: starting from a suitable description of the system dynamics via a stochastic Schrödinger equation \cite{2}, we have proven that given an initial quantum state and the coupling between the system and the environment, there is a one-to-one correspondence between the ensemble-averaged current density and the external vector potential applied to the system.

In this talk, I will introduce the stochastic formalism needed for the description of open quantum systems, discuss in details the theorem of Stochastic TD-CDFT, and provide few examples of its applicability like the dissipative dynamics of excited systems, quantum-measurement theory and other applications relevant to charge and energy transport in nanoscale systems.

1Work supported by DOE grant DE-FG02-05ER46204
