Spin dynamics of La$_{0.845}$Sr$_{0.155}$Mn$_{1-x}$M$_x$O$_3$ (M = Mn, Cu, Co) perovskites.

MANH-HUONG PHAN, HARIHARAN SRIKANTH, Department of Physics, University of South Florida, Tampa, FL 33620, THE-LONG PHAN, Micro- and Nano-Structures Group, H. H. Wills Physics Lab, University of Bristol, Bristol BS8 1TL, UK — Influence of the spin-lattice coupling on the magnetoresistance and magnetocaloric properties of La$_{0.845}$Sr$_{0.155}$Mn$_{1-x}$M$_x$O$_3$ (M = Cu, Co) perovskites has been investigated by means of electron spin resonance (ESR) spectroscopy. It was observed that asymmetrical ESR signals due to ferromagnetic correlations at temperatures $T < T_{\text{min}}$ became Lorentzian at $T > T_{\text{min}}$, where T_{min} corresponds to the narrowest ESR linewidth. The temperature dependence of the ESR intensity, $I(T)$, for the samples was well described by an expression of $I(T) = I_0 \exp(E_a/k_B T)$. In the high temperature region, $1/I(T)$ obeyed the Curie-Weiss law. The minimum linewidth, ΔH_{min}, was determined to be 674, 890 and 750 Oe for La$_{0.845}$Sr$_{0.155}$Mn$_3$O$_3$, La$_{0.845}$Sr$_{0.155}$Mn$_{0.9}$Cu$_{0.1}$O$_3$ and La$_{0.845}$Sr$_{0.155}$Mn$_{0.98}$Co$_{0.02}$O$_3$, respectively. This indicated an improvement of the spin-lattice coupling in samples with Cu or Co addition. The strongest spin-lattice coupling resulted in the largest magnetocaloric effect in La$_{0.845}$Sr$_{0.155}$Mn$_{0.9}$Cu$_{0.1}$O$_3$. The addition of Cu or Co in La$_{0.845}$Sr$_{0.155}$Mn$_3$O$_3$ reduced its ferromagnetism and conductivity. The mechanism of the spin-lattice coupling is discussed.

Manh-Huong Phan
Department of Physics, University of South Florida, Tampa, FL 33620

Date submitted: 23 Nov 2007

Electronic form version 1.4