Abstract Submitted
for the MAR08 Meeting of
The American Physical Society

Approximating Densities of States with Gaps using Maximally Broken Time-Reversal Symmetry

ROGER HAYDOCK, C.M.M. NEX, University of Oregon — When a finite cluster of atoms is used to approximate the electronic structure of a macroscopic system, the appropriate boundary condition for electronic states on the surface of the cluster is maximal flow of probability current through the boundary, or maximal breaking of time-reversal symmetry for the states. For continued fraction representations of electronic Greenians, this boundary condition gives excellent results for both the first and second sheets when there is a single band of states. In this work, the approximation is extended to Greenians for multiple bands separated by gaps, such as arise in semiconductors.

Supported by the Richmond F. Snyder Fund

Roger Haydock
University of Oregon

Date submitted: 25 Nov 2007