Electronic and magnetic properties of the chain compounds $K_3T_2O_4$ (T=Ni, Pd, Pt) KLAUS KOEPERNIK, IFW, Dresden, DEEPA KASINATHAN, WALTER SCHNELLE, HELGE ROSNER, MPI CPfS, Dresden — Recent susceptibility measurements on the chain compound $K_3Pd_2O_4$ were interpreted in terms of localized spin 1/2 Pd moments on one of the two crystallographically different Pd sites, only [R.V. Panin et al., J. Solid St. Chem. 180, 1566 (2007)]. The main exchange interaction was reported to be antiferromagnetic from the negative Curie-Weiss temperature $\Theta = -80K$. Earlier measurements for the isostructural and isovalent Ni and Pt compounds suggest an antiferromagnetic coupling for T=Ni whereas it is ferromagnetic for T=Pt. [H. Zentgraf et al., Z. Anorg. allg. Chem., 462, 92 (1980)] Here, we report an electronic structure study focusing on the interplay of covalency, spin-orbit coupling and correlation to describe the behavior of this compound family. The inclusion of strong Coulomb repulsion at the transition-metal sites is necessary to obtain the correct insulating ground state observed in recent measurements for the Pd system. The origin of the different magnetic behavior will be discussed.

Klaus Koepernik
IFW, Dresden

Date submitted: 26 Nov 2007

Electronic form version 1.4