Properties of MgB\textsubscript{2} Thin Films Grown at Different Temperatures by Hybrid Physical-Chemical Vapor Deposition1 MENNO VELDHORST2, KE CHEN, Department of Physics, The Pennsylvania State University, University Park, Pennsylvania, USA, CHE-HUI LEE, Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA, QI LI, XIAOXING XI3, Department of Physics, The Pennsylvania State University, University Park, Pennsylvania, USA — MgB\textsubscript{2} films grown by Hybrid Physical-Chemical Vapor Deposition (HPCVD) at high temperature excel in T_c, cleanness, and crystallinity. MgB\textsubscript{2} films have been grown at temperatures from 350$^\circ$C to 750$^\circ$C by a HPCVD system with separate Mg and substrate heaters. The 100 nm MgB\textsubscript{2} film grown on a (001) SiC substrate at 350$^\circ$C has a T_{c0} of about 36K and a residual resistance ratio of about 1.4. X-ray diffraction and atomic force microscopy show that the film is polycrystalline. The low-temperature grown MgB\textsubscript{2} films are promising as the top electrode for sandwich-type all-MgB\textsubscript{2} junctions to preserve the integrity of the barrier layer.

1This work is supported by ONR.
2Also with The Faculty of Science and Technology and MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
3Also with Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA