Growth of MgB$_2$ Films by an Impinging Jet HPCVD Reactor Design

DANIEL LAMBORN, Department of Chemical Engineering, Penn State University, University Park, PA, USA, R.H.T. WILKE, QI LI, Department of Physics, Penn State University, University Park, PA, USA, XIAOXING XI1, D.W. SNYDER, SHUFANG WANG, JOAN REDWING2, Department of Materials Science and Engineering, Penn State University, University Park, PA, USA — An impinging jet hybrid physical-chemical vapor deposition (HPCVD) reactor design was used for the growth of both thin and thick MgB$_2$ films. This technique was able to independently control the substrate and Mg supply temperatures, and still maintained sufficient Mg overpressure to ensure phase stability. Thin films were predominantly axis oriented with the (0001) sapphire substrate while the thick films were either polycrystalline or showed preferred orientation. Thick films (\sim10 μm) were deposited at a growth rate of \sim 110 μm/hr and showed a maximum T_c of 39.8 K and residual resistivity ratio of 6.6. The thick films also showed a high J_c of 2×10^6 A/cm2 at low applied magnetic fields even at 20 K. The results indicate that the impinging jet HPCVD configuration shows promise for coated conductor processes.

1Also with Department of Physics, Penn State University, University Park, PA, USA

2Also with Department of Chemical Engineering, Penn State University, University Park, PA, USA

Shufang Wang
The Pennsylvania State University

Date submitted: 30 Nov 2007

Electronic form version 1.4