Possible Exotic Magnetism in the Anti-Perovskite Nitride \(\text{Cr}_3\text{PtN} \)

J.R. THOMPSON, Univ Tennessee and Oak Ridge Natl Lab, M.P. BRADY, J.H. SCHNEIBEL, D.J. SINGH, E.A. PAYZANT, ORNL, J.W. SINCLAIR, A.P. SUBEDI, Univ Tennessee, A. MANIVANNAN, Natl Energy Tech Lab, M. SEEHRA, W VA Univ — Samples of the anti-Perovskite nitride \(\text{Cr}_3\text{PtN} \) were synthesized for bulk magnetic studies. X-ray diffraction confirmed the structure and revealed no secondary phases within instrumental sensitivity (\(\sim 2\text{-}4 \) vol. \%). Bulk magnetic properties were studied by SQUID magnetometry at \(T = 5\text{-}300 \) K in magnetic fields \(H \) up to 6.5 T. Highly hysteretic ferromagnetism was found, with a Curie temperature \(T_c \approx 110 \) K. (Prior to nitriding, the \(\text{Cr}_3\text{Pt} \) starting material was paramagnetic.) At 5 K, the coercive field \(H_c \) is \(\sim 2.3 \) T. The curious and possibly exotic feature is that the saturation magnetic moment is small, 0.2 G-cm\(^3\)/gram: if the signal arises from bulk \(\text{Cr}_3\text{PtN} \), the corresponding moment is only 0.1 \(\mu_B \) per formula unit, which is quite small for a 100 K ferromagnetic. The saturation magnetization varies as \(M_{\text{sat}} \sim (1-T/T_c)^\beta \) with critical exponent \(\beta=0.40 \). In isostructural Pd-based \(\text{Cr}_3\text{PdN} \) (not single phase), no ferromagnetism was found above 5 K. DFT calculations of the band structure for the ideal anti-Perovskite compounds revealed a high electronic density of states \(N(E_F) \) for \(\text{Cr}_3\text{PtN} \) and a somewhat lower value for \(\text{Cr}_3\text{PdN} \).

\(^1\)Research sponsored by US DOE via the LDRD Program of ORNL.

J.W. Sinclair
Univ Tennessee

Date submitted: 02 Dec 2007

Electronic form version 1.4