Investigation of Trapping Positions for Beryllium Atom in C\textsubscript{60} Fullerene and Electron Densities at 7Be Nucleus. LEE CHOW, ARCHANA DUBEY, H.P. SAHA, UCF Orlando, GARY S. COLLINS, Washington State University, Pullman, R.H. SCHEICHER, Uppsala University, Sweden, N.B. MAHARJAN, Tribhuvan University Nepal, SUNY Albany, S.R. BADU, R.H. PINK, M.B. HUANG, SUNY Albany, T.P. DAS, SUNY Albany, UCF Orlando — We are investigating, using first-principles Hartree-Fock Roothaan procedure, the trapping sites for 7Be atom in C\textsubscript{60} Fullerene, following broadly the same procedure as in earlier work by our group for trapping of muonium [1]. A number of possible sites, including the center of the C\textsubscript{60} and various positions near the fullerene surface both outside and inside C\textsubscript{60} are being studied including the effect of relaxation in the positions of neighboring C atoms. Electron densities at the 7Be nucleus will be presented for the sites where the binding energy is positive to attempt to understand the observed anomalous electron capture rate compared to other systems where trapped 7Be atom has been studied [2]. Results of our investigations for 7Be atom in graphite and graphene will also be presented for comparison with 7Be in C\textsubscript{60}. Possible influence of many-body effects will be discussed. [1] O. Donzelli, T. Briere, T.P. Das, Sol St. Comm. 90 663(1994), Indian J. Phys. 67 (Special Issue) 35 (1993) [2] Ohtsuki et al, Phys. Rev. Lett. 93,112501, (2004)