Forces between nanorods with end-adsorbed chains in polymer melts

AMALIE FRISCHKNECHT, Sandia National Laboratories — Adsorbed or grafted polymers are often used to provide steric stabilization of colloidal particles. When the particle size approaches the nanoscale, the curvature of the particles becomes relevant. Here I use a classical density functional theory to study the polymer-mediated interactions between two nanorods. The rods are immersed in an athermal, melt polymer blend consisting of: 1) a small fraction of chains of length \(N=20 \) with “sticky” ends that are attracted to the rods with energy \(e/kT \) so that they form a polymer brush on the rods; and 2) a matrix of chains of length \(P \) which have no interactions with the rods. The structure of the brushes depends on the nanorod diameter, \(P \), and \(e/kT \). There is an attractive well in the force between the rods near contact, followed by a strong repulsion as the brushes are compressed. The depth of the well increases with increasing \(P \). I will discuss the implications for experimental systems. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.