Abstract for an Invited Paper
for the MAR08 Meeting of
the American Physical Society

In situ Raman Spectroscopy of Suspended Carbon Nanotubes under High Voltage Bias

STEPHEN CRONIN, University of Southern California

We report recent results of Raman spectroscopy taken of individual suspended single-walled carbon nanotubes exhibiting negative differential conductance (NDC) in situ under high voltage biases [1]. The transverse and longitudinal optical phonon modes (G_+ and G_- band) are found to respond differently to the applied voltage bias. We observe preferential downshifting of only one optical phonon mode while the other remains largely unchanged, indicating a non-equilibrium phonon population caused by the preferential electron-phonon coupling of only one optical phonon polarization. This preferential coupling is caused by the differences between the two Kohn anomalies in the TO and LO phonon branches [2]. Surprisingly, in most metallic nanotubes, the narrow G_+ band (TO band) is more strongly heated by electron-phonon scattering at high biases. The non-equilibrium phonon populations produced under high biases are corroborated by anti-Stokes Raman spectroscopy. We correlate the optically measured phonon population to the electrically measured resistivity using a Landauer model to determine key scattering parameters. The electron-phonon scattering mechanism revealed by these measurements and this analysis show the importance of electron-phonon scattering by phonon absorption from the large non-equilibrium phonon population in explaining the observed negative differential conductance [3].


*The authors would like to acknowledge DOE Award No. DE-FG02-07ER46376.