Nuclear quantum effects in water1 JOSEPH MORRON, ROBERTO CAR, Dept. of Chemistry, Princeton University — In this work, a path integral Car-Parrinello molecular dynamics2 simulation of liquid water is performed. It is found that the inclusion of nuclear quantum effects systematically improves the agreement of first-principles simulations of liquid water with experiment. In addition, the proton momentum distribution is computed utilizing a recently developed “open” path integral molecular dynamics methodology3. It is shown that these results, which are consistent with our computations of the liquid structure, are in good agreement with neutron Compton scattering data4. The remaining discrepancies between experiment and the present results are indicative of some degree of over-binding in the hydrogen bond network, likely engendered by the use of semi-local approximations to density functional theory in order to describe the electronic structure.

1This work was supported by the Fannie and John Hertz Foundation and DOE grant DE-FG02-05ER46201

Joseph Morrone
Dept. of Chemistry, Princeton University

Date submitted: 12 Dec 2007

Electronic form version 1.4