Second-order self-refocusing pulse shapes for arbitrary rotation angles

LEONID P. PRYADKO, University of California, Riverside, PINAKI SEN-GUPTA, Los Alamos National Laboratory — We construct several families of high-precision 1st- and 2nd-order self-refocusing pulse shapes for rotation angles $\alpha = 0^\circ, 10^\circ, \ldots, 360^\circ$. To characterize their performance, we show that for an arbitrarily-coupled qubit driven by a general one-dimensional symmetric pulse shape, in addition to the net rotation angle, the second-order average Hamiltonian is defined by three parameters. Our 1st- and 2nd-order self-refocusing pulses respectively have one or two of these equal to zero, which makes them useful as a drop-in replacement for hard pulses. We illustrate this by analyzing several commonly-used composite pulses in terms of the average Hamiltonian theory. The results are in an excellent agreement with numerical simulations.

1This research was supported in part by the NSF grant No. 0622242 (LP)