Interface structure and radiation damage resistance in Cu-Nb multilayer nanocomposites

MICHAEL DEMKOWICZ, RICHARD HOAGLAND, JOHN HIRTH, Los Alamos National Laboratory — We use atomistic simulations to show that misfit dislocations in Cu-Nb interfaces can shift location between two adjacent planes by forming pairs of extended jogs, a mechanism that involves removal or insertion of atoms. Different jog combinations give rise to interface structures with unlike densities but nearly degenerate energies, making Cu-Nb interfaces virtually inexhaustible sinks for irradiation-induced point defects and catalysts for efficient Frenkel pair recombination.

This work was supported by the Los Alamos National Laboratory Directed Research and Development Program (LDRD) and the Los Alamos National Laboratory Directors Fellowship Program.