Coherent control of single spins in diamond

RONALD HANSON, Kavli Institute of Nanoscience Delft

Diamond-based materials have recently emerged as a unique platform for quantum science and engineering. Spins of single Nitrogen-Vacancy (N-V) color centers in diamond can be imaged, initialized and read out optically. These N-V center spins may allow for quantum information processing at room temperature, as measurements have shown long room-temperature electron spin coherence times well into the microsecond regime. We have investigated single N-V center spins that are coupled to electron spins of nearby nitrogen (N) defects, using magneto-optical imaging and coherent single-spin control at room temperature. Some of the N-V centers are strongly coupled to only one single N spin, allowing the controlled polarization and readout of this single ‘dark’ N spin. In contrast, other N-V centers couple to many N spins. We use these latter systems to study the canonical decoherence model of a single central spin coupled to a spin bath. By tuning the internal bath dynamics as well as the spin-bath coupling, we gain access to regimes with strikingly different behaviour. Finally, we have fabricated and characterized photonic crystal microcavities in poly-crystalline diamond and observed quality factors up to 600. These structures are a first step towards controllable coupling of single N-V spins to single photons in a cavity-QED system in diamond.

1in collaboration with V.V. Dobrovitski, A.E. Feiguin, O. Gywat, C.F. Wang, E. Hu, and D.D. Awschalom. Financially supported by FOM, AFOSR and DARPA/CNID.
