Nonequilibrium Relaxations and Aging Effects near a Metal-Insulator Transition in Two Dimensions1 DRAGANA POPOVIĆ, JAN JAROSZYŃSKI, NHMFL/FSU — The relaxations of conductivity $\sigma(t)$ have been studied in the glassy regime of a strongly disordered two-dimensional (2D) electron system in Si after a temporary change of carrier density n_s during the waiting time t_w. Two types of response have been observed [1]: (a) monotonic, where relaxations exhibit aging, \textit{i.e.} dependence on history, determined by t_w and temperature; (b) nonmonotonic, where a memory of the sample history is lost. The conditions that separate the two regimes have been determined. A detailed study of the aging regime [2] reveals an abrupt change in the nature of the glassy phase at the metal-insulator transition (MIT) before it vanishes entirely at a higher density n_g. Our results provide further support to theories describing the 2D MIT as the melting of a Coulomb glass, and put constraints on the models of glassy freezing.

1Supported by NSF Grant DMR-0403491 and NHMFL via NSF No. DMR-0084173.