Spectral Intensities of Transitions Between Stark Levels of Er$^{3+}$(4f11) in Single Crystal, Ceramic, and Nanocrystalline Y$_2$O$_3$

KELLY NASH, JOHN GRUBER, DHIRAJ SARDAR, University of Texas at San Antonio, UYGUN VALIEV, National University of Uzbekistan, NIKOLAI TERR-GABRIELYAN, LARRY MERKLE, AROCKIASAMY MICHAEL, Army Research Laboratory — Similarities and differences among the optical properties of Er$^{3+}$:Y$_2$O$_3$ in single crystal, polycrystalline (ceramic), and nanocrystalline forms are discussed based on spectra obtained between 400 nm and 1700 nm and temperatures between 8 K and 300K. The observed crystal-field splitting and the measured intensities of transitions between the $^{2S+1}L_J$ manifolds of Er$^{3+}$(4f11) in both the C2 and C3i sites are analyzed in terms of models that invoke the mixing of states of opposite parity through the odd terms in the crystal-field Hamiltonian. The inversion symmetry of C3i sites limits electronic transitions to magnetic dipole transitions between the 4I$_{13/2}$ and 4I$_{15/2}$ manifolds. For Er$^{3+}$ ions in C2 sites, the forced electric-dipole transitions along with some magnetic dipole contribution in certain cases, are allowed between the J+1/2 Stark levels within all manifolds. Within the instrumental resolution, there are some important differences between intensities of transitions depending on particle size of the Er$^{3+}$:Y$_2$O$_3$.

Kelly Nash
University of Texas at San Antonio

Date submitted: 29 Nov 2007

Electronic form version 1.4