Nanoscale Control of an Interfacial Metal-Insulator Transition at Room Temperature1 CHENG CEN, JEREMY LEVY, STEFAN THIEL, GERMAN HAMMERL, CHRISTOF W. SCHNEIDER, JOCHEN MANNHART, KRISTOPHER E. ANDERSON, C. STEPHEN HELLBERG — We report the creation and erasure of nanoscale conducting regions at the interface between two insulating oxides, LaAlO\textsubscript{3} and SrTiO\textsubscript{3}. Using voltages applied by a conducting atomic force microscope (AFM) probe, the buried LaAlO\textsubscript{3}/SrTiO\textsubscript{3} interface is locally and reversibly switched between insulating and conducting states. Persistent field effects are observed using the AFM probe as a gate. Patterning of conducting lines with widths \sim3 nm, as well as arrays of conducting islands with densities $>10^{14}$/in^2, are demonstrated. The patterned structures are stable for >24 hours at room temperature.

1This work was supported by NSF-0704022 (JL), DARPA DAAD-19-01-1-0650 (JL), the DFG (SFB 484) (JM), the EC (Nanoxide) (JM) and the ESF (THIOX) (JM).