17O Nuclear Magnetic Resonance Chemical Shielding Calculations of PZT Solid Solutions1 DANIEL L. PECHKIS, ERIC J. WALTER, HENRY KRAKAUER, College of William and Mary — First principles B3LYP calculations of 17O NMR in PbTiO$_3$, Pb(Zr$_{1/2}$Ti$_{1/2}$)O$_3$ (PZT), and PbZrO$_3$ will be presented. These systems were modeled with finite size quantum clusters embedded in point charge arrays. The embedding reproduces the Ewald Coulomb potential to better simulate the crystal environment.3 For polar systems, the calculations were performed in the presence of an external electric field to cancel surface depolarization effects.4 PZT was modeled using three chemically ordered structures: P4mm, P2mm, and R3m. Two groupings of 17O isotropic chemical shifts δ_{iso} are seen in all of our PZT calculations with [001] ordering. One is at $\delta_{\text{iso}} \approx 400$ppm and the other is at $\delta_{\text{iso}} \approx 650$ppm. We relate these to variations in the Ti-O and Zr-O bond lengths and use this to interpret recent experimental measurements.5

1Supported by ONR
2Supported by Virginia Space Grant Consortium Fellowship
4S. Li and K. Rabe. APS March Meeting abstract (2007).