Writing and Reading of Ultrathin Ferroelectric Domains on Commensurate SrTiO$_3$ on Silicon1 JEREMY LEVY, CHENG CEN, CHARLES R. SLEASMAN, MAITRI WARUSAWITHANA, DARRELL G. SCHLOM — Ferroelectricity in ultrathin epitaxial SrTiO$_3$ grown commensurately by oxide-molecular beam epitaxy (MBE) on silicon substrates was investigated using piezoforce microscopy (PFM). A series of samples containing n molecular layers (ML) of SrTiO$_3$ ($n = 3, 4, 5, 6, 8, 10, 20$) was grown on silicon substrates. Room-temperature ferroelectricity was observed for samples containing $n = 5, 6, 8, 10$ ML. Temperature-dependent measurements indicate that the sample with $n = 5$ exhibits a ferroelectric phase transition at $T_c \sim 317$ K. Sample with $n = 6$ remains ferroelectric up to at least 393K. Polar domains created on the $n = 6$ was found to be stable at room temperature for more than 72 hours. The implications of these results for fundamental and device-related applications will be discussed briefly.

1This work was supported by NSF-0704022 (JL) and Office of Naval Research (ONR) through grants N00014-03-1-0721 (DGS) and N00014-04-1-0426 (DGS) monitored by Colin Wood