Abstract Submitted
for the MAR08 Meeting of
The American Physical Society

O₂ Dissociative Adsorption on Cu₂O(100) with O Vacancies¹ DUY LE, SERGEY STOLBOV, TALAT RAHMAN, University of Central Florida — Cu₂O surfaces and nanoparticles have been shown to have high activity for CO oxidation [1]. As a result of consumption of the surface oxygen during the CO oxidation process on Cu₂O(100), the issue of restoration of the surface composition becomes critical. Through first principles electronic structure calculations of the geometry, activation energy barriers, reaction pathways, and the local densities of electronic states for O₂ dissociative adsorption on the Cu₂O(100) surface with O vacancies, we show that the healing of oxygen vacancies is accompanied by reconstruction of the surface. Our calculations are based on density functional theory in the generalized gradient approximation and usage of ultrasoft pseudopotential method in the plane wave representation. [1] B. White, M. Yin, A. Hall, D. Le, S. Stolbov, T. S. Rahman, N. Turro, and S. O’Brien, Nano Lett., 6, 2095 (2006).

¹Work supported in part by DOE under Grant No. DE-FG02-07ER15842. Computational resources: TeraGrid grant No: DMR050039N.