Coulomb scattering and transport in graphene1 DMITRY NOVIKOV, Yale University — The exact transport cross-section off a Coulomb impurity in graphene \cite{1} is proportional to the carrier wavelength. Unexpectedly, the relativistic Coulomb scattering also exhibits a pronounced attraction-repulsion asymmetry \cite{1,2}: Massless carriers are scattered more strongly when they are attracted to a charged impurity than when they are repelled from it. This finding, confirmed recently \cite{3}, can be used to separately determine the surface density of donors and acceptors in a graphene monolayer \cite{2}. I will outline quantitative and qualitative differences between the exact result \cite{1} and the commonly used Born approximation for charged impurity scattering. \cite{1} D. S. Novikov, arXiv:0706.1391, Phys. Rev. B (in press); \cite{2} D. S. Novikov, Appl. Phys. Lett. 91, 102102 (2007); \cite{3} J. H. Chen, C. Jang, M. S. Fuhrer, E. D. Williams, M. Ishigami, arXiv:0708.2408v2.

1Work supported by NSF Grants DMR 02-37296 and 04-39026, and by DOE Grant DE-FG02-06ER46310