Inter-relationship among magnetization, polarization and magnetic wave vector in multiferroic spinel CoCr$_2$O$_4$

YOUNG JAI CHOI, JUN OKAMOTO, DI-JING HUANG, KUO SHENG CHAO, HONG-JI LIN, CHIEN-TE CHEN, MICHEL VAN VEELENDAAL, THOMAS A. KAPLAN, SANG-WOOK CHEONG — It has been known that the spinel CoCr$_2$O$_4$ is a multiferroic with conical spiral magnetic order characterized by three physical parameters: magnetization (M), polarization (P) and magnetic modulation vector (Q). We have found that these observables have a close inter-relationship in the multiferroic state and their inter-relationship changes in a methodical manner upon temperature variation and through applied magnetic fields. In order to understand the origin of this inter-relationship, we have performed comprehensive characterization experiments on the multiferroic compound, including measurements of dielectric constant, polarization, specific heat, magnetic susceptibility, and resonant x-ray scattering as functions of temperature and applied magnetic field.

Young Jai Choi
Rutgers University

Date submitted: 05 Dec 2007