EPR Studies of Highly Interconnected Nanostructured Polyani-
line Network1 OLUDUROTIMI O. ADETUNJI, N.-R. CHIOU, N.P. RAJU ,
A.J. EPSTEIN, Department of Physics, The Ohio State University, Columbus, OH
43210-1117 — We present temperature-dependent X-band electron paramagnetic
resonance susceptibility and linewidth studies of nanostructured polyaniline doped
with perchloric acid (PANN/HClO\textsubscript{4}). From analysis of the EPR data we determine
that network has both Pauli- and Curie-like susceptibility with X^P of $\sim 2 \times 10^{-5}$
emu/mole-2-ring repeat unit and a localized spin density of ~ 1 spin per 400 2-ring
repeat units and exhibits a Lorentzian-like lineshape. The EPR linewidth from 100
K to room temperature exhibits two different linear regimes, where the linewidth
increases linearly with increase in temperature. We will discuss the role of Korringa
relaxation in determining the high temperature linewidth. We will consider the roles
of disorder, localization and interfiber contact within the nanostructure network.

1This work is supported in part by the NSF-IGERT Grant No. 0221678 and NSF-
NSEC Grant No. 6000644.