Towards ordered flux flow in A15 superconductor V_3Si at high fields

R. KHADKA, A.A. GAPUD, University of South Alabama, A.P. REYES, L. LUMATA, P.L. KUHNS, National High Magnetic Field Laboratory, D.K. CHRISTEN, Oak Ridge National Laboratory — The motion of flux quanta is observed in a high-quality superconducting single crystal of V_3Si with weak pinning and significantly reduced thermal fluctuations due to a critical temperature of less than 17 K. This opens up the possibility of approaching ordered, Bardeen-Stephen flux flow (BSFF). The flux flow resistivity ρ_{ff} associated with dissipative flux motion is observed in V-I curves as a high-current transition to an ohmic curve whose dissipation level is below the normal-state level. Details of overcoming technical difficulties of using high currents are described. BSFF is expected to be manifested by a linear dependence of ρ_{ff} on applied field H. Measuring from fields of 6 T up to 20 T, an approach to ohmic curves characteristic of BSFF are clearly distinguishable, along with other interesting features such as the “peak” effect in critical current $J_c(H)$ seen only when the pinning energy density is comparable to the elasticity of the flux medium. This and further data and their interesting ramifications are discussed.

1Research funded by University of South Alabama startup funds and Summer Professional Development Award.

Albert Gapud
University of South Alabama

Date submitted: 03 Dec 2007

Electronic form version 1.4