Study of Magneto-Transmission Spectra of La$_{0.7}$Pb$_{0.3}$MnO$_{3-\delta}$ Epi-
taxial Thin Film1 SIDNEY MALAK, Binghamton University, RYAN CLAYTON-
COX, JIRI STEHLIK, JIAN-QING WANG, Binghamton University — Magneto-
transmission (MT) of epitaxially grown La$_{0.7}$Pb$_{0.3}$MnO$_{3g}$ was measured. Thermo-
Electron Nexus 670 FT-IR spectrometer equipped with an electromagnet was used
to obtain IR spectra in the range of 350 to 15000 cm$^{-1}$ in various applied magnetic
fields up to 1.0 Tesla. For optimal magneto-spectroscopic measurements in trans-
mission, the studied film had a thickness of 190 nm, with a maximum value up to
80% at 320 K in the colossal magnetoresistance (CMR) effect in 5.5 Tesla. It was
observed that the MT scale proportionally with the applied magnetic field and was
largest at longer wavelengths below 4000 cm$^{-1}$. In this far infrared range, the max-
imum observed MT value was 4.0 % at 1.0 Tesla. Beyond FIR range the MT curves
monotonically decrease with frequency, until the effect vanishes at 12,000 cm$^{-1}$.
Such crossover of magneto-spectroscopic responses from IR to optical frequencies
is the first evidence of gradual disappearance of the magento-dynamics at higher
frequencies. Compared with the CMR effect, the measured MT property resembled
that of the CMR closely in the field range and frequency ranges studied.

1Work is supported by Research Corporation award CC5766 and by DOE award
DEFC52004NA25658