Fabrication Procedures and Material Properties of Activated Carbon for Hydrogen and Methane Storage1 JEFFREY POBST, JACOB BURRESS, MIKAEL WOOD, MATTHEW BECKNER, PARAG SHAH, MICHAEL GORDON, Univ. of Missouri-Columbia, PHILLIP PARILLA, NREL, SARAH BARKER, SARA CARTER, LAUREN ASTON, GALEN SUPPES, PETER PFEIFER, Univ. of Missouri-Columbia — The Alliance for Collaborative Research in Alternative Fuel Technology (http://all-craft.missouri.edu) has developed nanoporous biocarbons with interesting pore characteristics. These carbons are being optimized for hydrogen and methane vehicular storage. Our current best performer stores 73-91 g H\textsubscript{2}/kg carbon at 77 K and 47 bar, and 1.0-1.6 g H\textsubscript{2}/kg carbon at 293 K and 47 bar. The validity of using methane storage as a predictor for hydrogen storage will be presented. Recent carbons have achieved porosities as high as of 0.8 and BET surface areas of 3,500 m2/g. Optimal pore sizes and volumes will be presented for hydrogen storage nanoporous carbon.

1NSF-PFI (PFI-0438469); GAANN U.S. Dept. of Ed. (P200A040038); D.O.E. (DE-AC02-06CH11357); MU Research Board: Univ. of Missouri (RB-06-040); D.O.D. (N00164-07-P-1306); D.O.E. (DE-FG02-07ER46411)