Linear Crack Arrays and Resistive Anisotropy in Nd$_{0.2}$Sr$_{0.8}$MnO$_3$
Thin Films Under Tensile Strain* KRISHNA NEUPANE, JOSHUA COHN, University of Miami, JOHN NEUMEIER, Montana State University — The structure, morphology, and electrical properties of epitaxial a-axis oriented thin films of Nd$_{0.2}$Sr$_{0.8}$MnO$_3$ are reported for thicknesses $10 \leq t \leq 150$ nm. Films with $t \geq 20$ nm grown under tensile stress on NdGaO$_3$ (100) and LSAT (110) substrates develop uniform linear crack arrays (cracks running along film c axis) with a crack spacing (0.3-10 μm) that decreases with increasing thickness. Films grown under compression on LaAlO$_3$(110) substrates exhibit no cracks. The room-temperature in-plane electrical resistance ratio, ρ_b/ρ_c, increases approximately exponentially with increasing film thickness to values of ~ 1000 in the thickest films studied. The temperature dependencies for ρ_b and ρ_c are essentially identical, suggesting that very long effective transport paths perpendicular to the cracks are responsible for enhanced values of ρ_b.

* This material is based upon work supported by the National Science Foundation under grants DMR-0072276 (Univ. Miami) and DMR-0504769 (Montana State Univ.), the Research Corporation (Univ. Miami), and the U.S. DOE Office of Basic Energy Sciences (Grant No. DE-FG-06ER46269).

Joshua Cohn
University of Miami

Date submitted: 27 Nov 2007

Electronic form version 1.4