Magnetic excitations in a quantum spin dimer system Ba$_3$Cr$_2$O$_8$

MAIKO KOFU, JUNG-HWA KIM, SEUNG-HUN LEE, Univ. of Virginia, BELLA LAKE, Hahn-Meitner Institute, YIMING QIU, National Institute of Standards and Technology, HIROAKI UEDA, YUTAKA UEDA, ISSP, Univ. of Tokyo — We report our neutron scattering measurements on a powder sample of a new quantum spin system Ba$_3$Cr$_2$O$_8$ in which Cr$^{5+}$ (3d1, $S = 1/2$) ions form a double-layered triangular lattice. The system does not undergo any magnetic ordering down to 50 mK. Instead, bulk susceptibility data exhibit a broad peak around 16K. Our inelastic neutron scattering data at temperatures lower than 30 K show a prominent excitation at $\hbar \omega = 2.2$ meV. Q- and temperature dependences of the integrated intensity of the excitation can be well accounted for by a model of weakly coupled quantum dimers. When an external magnetic field is applied, the excitation splits into three energies, which confirms the dimer model. We have investigated how the singlet-to-triplet excitations evolve with increasing the magnetic field up to 14.5 Tesla.