Magnetron sputter deposition of a 48-member cuprate superconductor library: Bi$_2$Sr$_2$Y$_x$Ca$_{1-x}$Cu$_2$O$_{8+δ}$ (0.5 \leq x \leq 1) linearly varying in steps of $\Delta x = 0.01$.

KEVIN HEWITT, ROBERT SANDERSON, Dalhousie University — Using magnetron sputtering, a spatial composition spread approach was applied successfully to obtain 48-member libraries of the Bi$_2$Sr$_2$Y$_x$Ca$_{1-x}$Cu$_2$O$_{8+δ}$ (0.5 \leq x \leq 1) cuprate superconducting system. The libraries were deposited onto (100) single crystal MgO, mounted on a water cooled rotating table, using two targets: the antiferromagnetic insulator Bi$_2$Sr$_2$YCu$_2$O$_{8+δ}$ (P=98 W RF) and the hole doped superconductor Bi$_2$Sr$_2$CaCu$_2$O$_{8+δ}$ (P=44 W DC). A low chamber pressure of 0.81 mTorr argon is used to reduce scattering by the process gas. To minimize oxygen resputtering a substrate bias of -20 V was used as well as a process gas free of oxygen. A rapid thermal processor is used to post-anneal the amorphous deposited films following a step annealing regime - ramp at 5 °C/s for heating and cooling, with a first plateau at 780 °C held for 200 s, and a second at 875 °C held for 480 s. X-ray diffraction reveals that the films develop crystalline order with the c-axis lattice parameter contracting linearly from 30.55 Å (x=0.5) to 30.24 Å (x=1.0) with increasing Y-content, consistent with bulk values. The films are polycrystalline, developing preferred orientation for thinner members of the library. There is a change of 0.01 in doping per library member which will enable further studies to densely map phase space.

1Financial support from the Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged.

Kevin Hewitt
Dalhousie University

Date submitted: 27 Nov 2007

Electronic form version 1.4