Breakeven Fusion in Staged Z Pinch\(^1\) HAFIZ RAHMAN, University of California, PAUL NEY, Mount San Jacinto College, NORMAN ROSTOKER, FRANK WESSEL, University of California — We are studying the prospect for breakeven thermonuclear fusion considering a Mega joule (MJ) class, 100 ns, impulse generator using a modified version of MACH2, a 2-1/2 D, radiation-code. The load is a cylindrical, xenon plasma shell that implodes radially onto a co-axial, deuterium-tritium plasma target. Optimized plasma density and pinch radius lead to a fusion-energy output that is many times the stored capacitor bank energy. In this “Staged Z-pinch” shock fronts form that preheat the DT plasma to several hundred eV, before adiabatic compression. During compression, the Xe liner becomes Rayleigh-Taylor (RT) unstable while the DT target remains stable. Proper selection of the initial pinch radius and plasma density is crucial for optimum implosion efficiency.

\(^1\)Supported by the US Department of Energy.

Frank Wessel
University of California

Date submitted: 05 Dec 2007

Electronic form version 1.4