Dynamical structure factor of LiF for all wave vector transfers: New results and insights

Q. KOU, M.C. TROPAREVSKY, A.G. EGUILUZ(1), Univ. of Tenn.; MSTD-ORNL(2), B.C. LARSON, J.Z. TISCHLER, MSTD-ORNL(2), P. ZSCHACK, APS-ANL(3) — We report a theoretical-experimental investigation of the dynamical structure factor of LiF. The calculations are done within the TDLDA of time-dependent density functional theory; the measurements correspond to non-resonant inelastic x-rays scattering (NIXS) cross sections, obtained in absolute units. The TDLDA spectra contain one adjustable parameter: a “scissors-operator” shift of the conduction bands. This parameter is determined in view of the NIXS line shape for $q = 6\,\text{Å}^{-1}$ ($q//(111)$). The TDLDA spectra display a non-trivial semi-quantitative agreement with the NIXS data, for all wave vectors (directed along the three high-symmetry directions); indeed, the line shape changes drastically from the coherent-response small-q regime, to the incoherent-response large-q regime. The picture of the excitations which emerges offers an alternative view relative to a seminal investigation involving an approximate solution of the Bethe-Salpeter equation; W. A. Caliebe et al. Phys. Rev. Lett. 84, 3907 (2000).

1 supported by NSF ITR Grant No. DMR-0219332; 2 sponsored by the DOE-BES, Div. of Materials Sciences and Engineering; 3 sponsored by the DOE Office of Science

Q. Kou
Univ. of Tenn.; MSTD-ORNL

Date submitted: 14 Dec 2007
Electronic form version 1.4