Shear Viscosity and the Perfectness of Fluid

GAUTAM RUPAK, THOMAS SCHAEFER, North Carolina State University —
A recent calculation of the shear viscosity for a unitary gas is presented. Here unitary gas is defined as a
non-relativistic Fermi gas with infinite scattering length. The unitary gas is a scale
invariant strongly-interacting many-body system, and possesses universal properties
that are of interest across subfields in physics. A unitary gas can be realized in cold
atomic gas experiments near a Feshbach resonance. Conditions approximating the
unitary gas emerge in low energy nuclear physics as well. From general principle,
the shear viscosity of a strongly interacting gas should be small, however, quantum
mechanics places a lower bound. A strict lower bound indicating how “perfect” a
fluid can become has been conjectured from calculations in strongly coupled field
theories that have a gravity dual. We test this conjecture with an explicit calculation
in a unitary gas, the most strongly interacting non-relativistic system experimentally
known.