Direct Measurement of the Bose-Einstein Condensation Universality Class in NiCl$_2$-4SC(NH$_2$)$_2$ at Ultralow Temperatures1 LIANG YIN, J.S. XIA, N.S. SULLIVAN, Department of Physics, University of Florida, and NHMFL, V.S. ZAPF, NHMFL, Los Alamos National Laboratory, A. PADUAN-FILHO, Universidade de Sao Paulo — In this work, we demonstrate field-induced Bose-Einstein condensation (BEC) in the organic compound NiCl$_2$-4SC(NH$_2$)$_2$ using ac susceptibility measurements down to 1 mK. The Ni S=1 spins exhibit 3D XY antiferromagnetism between a lower critical field H_{c1} ~ 2 T and a upper critical field H_{c2} ~ 12 T. The results show a power-law temperature dependence of the phase transition line $H_{c1}(T) - H_{c1}(0) = aT^\alpha$ with $\alpha = 1.47 \pm 0.10$ and $H_{c1}(0) = 2.053$ T, consistent with the 3D BEC universality class. Near H_{c2}, a kink was found in the phase boundary at approximately 150 mK.

1This work was supported by NSF Cooperative Agreement No. DMR 0654118, the Department of Energy and the State of Florida, the Brazilian Agencies CNPq and FAPESP.