LiBH$_4$+Ca(BH$_4$)$_2$ composite system for hydrogen storage

JI YOUN LEE, YOONYOUNG KIM, YOUNG-SU LEE, JAE-HYEOK SHIM, YOUNG WHAN CHO, Korea Institute of Science and Technology, Republic of Korea, DORTHE RAVNSBK, TORBEN JENSEN, University of Aarhus, Denmark, YNGVE CERENIUS, Lund University, Sweden — LiBH$_4$ is one of the promising candidates for hydrogen storage materials because of its high gravimetric and volumetric hydrogen capacity. However, dehydrogenation of LiBH$_4$ occurs above 400°C, which limits its use in its pristine form. By mixing with Ca(BH$_4$)$_2$, we have tried to lower the dehydrogenation temperature. The underlying design principle of this composite system is the recently proven reversibility of 6LiBH$_4$+CaH$_2$ composite and Ca(BH$_4$)$_2$ itself. Using differential scanning calorimetry and in-situ synchrotron XRD measurement, we observed eutectic melting of (1-\(x\))LiBH$_4$ + \(x\)Ca(BH$_4$)$_2$ at around 200°C in a wide range of \(x\). The decomposition characteristics and the hydrogen capacity of this composite vary with \(x\), and at a certain value of \(x\) we found that decomposition was finished below 400°C showing more than 10 wt% hydrogen capacity. Reversibility of this system was also confirmed.

Ji Youn Lee

Date submitted: 07 Dec 2008

Electronic form version 1.4