Coexistence between magnetism and superconductivity in the HgMn$_{0.3}$Pb$_2$ compound

AUSDINIR DANILÔ BORTOLOZO, Escola de Engenharia de Lorena - EEL - USP-Brazil, ERIKA CARLINA A. SANTANA, Faculdade de Engenharia de Guaratinguetá - FEG - Brazil, CARLOS ALBERTO M. DOS SANTOS, ANTONIO JEFFERSON S. MACHADO, Escola de Engenharia de Lorena - EEL - USP-Brazil — In this work will be show the influence Mn doping in the HgPb$_2$ phase. The HgMn$_{0.3}$Pb$_2$ phase is investigated by x-ray diffraction, magnetic and electrical resistivity measurements. Polycrystalline samples with HgMn$_{0.3}$Pb$_2$ nominal compositions were prepared by solid state reaction. X-ray powder diffractionograms suggest that all peaks can be indexed with the tetragonal phase of AuCu prototype. The $R(T)$ data for the HgMn$_{0.3}$Pb$_2$ composition reveals superconductor behavior below 5.9K. The careful analysis of M(T) data reveals magnetic ordering close to 45K with saturation around the superconducting transition. The Mn doping in the HgPb$_2$ phase suggests the magnetic ordering it is occurring in the specific plane occupied by Mn atoms. The M(H) data show typical type-II superconductor which we estimate the H_{C1} approximately 240 Oe. This work, report by first time the coexistence between magnetism and superconductivity in an AuCu prototype compound.