Divergent four-point dynamic density correlation function of a glassy suspension

GRZEGORZ SZAMEL, ELIJAH FLENNER, Department of Chemistry, Colorado State University — We use a diagrammatic formulation of the dynamics of interacting Brownian particles to study a four-point dynamic density correlation function of a glassy colloidal suspension. We re-sum a class of diagrams which separate into two disconnected components upon cutting a single propagator. The resulting formula for the four-point correlation function can be expressed in terms of three-point functions closely related to the three-point susceptibility introduced by Biroli et al. and the standard two-point correlation function. We numerically evaluate the four-point function and the associated dynamic correlation length. Both the amplitude of the four-point function and the correlation length diverge at the mode-coupling transition.

1We acknowledge the support of NSF Grant No. CHE 0517709.