Simulating self-assembly of porphyrin nanorods GREGORY K. GUTHE, ADAM V. SUBHAS, WALTER F. SMITH, JOSHUA SCHRIER, Haverford College — Diacid meso-tetra(4-sulfonatophenyl)porphine (TPPS$_2^{-}$) monomers have been shown to self assemble into nanorods with well-defined cross-section1 and intriguing photoelectronic properties2. However, the structure and conduction mechanism of these nanorods is poorly understood, and questions remain about the aggregation process. Using density functional theory (DFT), we first obtain optimized geometries and atomic-charges for the monomers, which we then use for subsequent molecular dynamics (MD) simulations to observe the initial stages of the self-assembly process. This work uses the resources of the National Energy Research Scientific Computing Center. 1A.D. Schwab et al., J. Phys. Chem. B 107, 11339 (2003). 2A.D. Schwab et al., Nano Letters 4, 1261 (2004).