Gap anisotropy and universal pairing scale in a spin fluctuation model for cuprates ARTEM ABANOV, Texas A&M University, ANDREY CHUBUKOV, University of Wisconsin, MICHAEL NORMAN, Argonne National Laboratory — We consider the evolution of $d_{x^2-y^2}$ pairing, mediated by nearly critical spin fluctuations, with the coupling strength. We show that the onset temperature for pairing, T^*, smoothly evolves between weak and strong coupling, passing through a broad maximum at intermediate coupling. At strong coupling, T^* is of order the magnetic exchange energy J. We argue that for all couplings, pairing is confined to the vicinity of the Fermi surface. We also find that thermal spin fluctuations only modestly reduce T^*, even at criticality, but they substantially smooth the gap anisotropy. The latter evolves with coupling, being the largest at weak coupling.