Molecular dynamics simulations of polymer crystallization via
self-seeding1 CHUANFU LUO2, JENS-UWE SOMMER, Leibniz Institute of Poly-
mer Research Dresden, 01069, Germany — We use large scale molecular dynamics
(MD) to simulate the processes of polymer crystallization with a coarse-grained
model. In total we are able to simulate 1000 polymer chains made of 1000 monomers
each, a system large enough to compare to experimental relevant, entangled melts.
It is found that some micro crystalline domains (MCDs) can survive slightly above
the apparent melting temperature after a consistent cooling and reheating cycle. We
chose the stablest MCD as a baby seed and let it grow at a constant quenched tem-
perature. A single lamella can be formed via this self-seeding process. We observe
the growth pathway and analyze the chain dynamics especially at the growth front.

1Deutsche Forschungsgemeinschaft (DFG) SO 277/6-1
2luo@ipfdd.de