Membrane-mediated interactions drive the condensation and coalescence of FtsZ rings

ROIE SHLOMOVITZ, NIR GOV, Weizmann Institute

— The role of the coupling between the shape of membrane-bound filaments, and the membrane, is demonstrated for the dynamics of FtsZ rings on cylindrical membranes. Filaments with an arc-like spontaneous curvature, and a possible added active contractile force, are shown to spontaneously condense into tight rings, associated with a local inwards deformation of the membrane. The long-range membrane-mediated interactions are attractive at short ring-ring separations, inducing the further coarsening dynamics, whereby smaller rings merge to form larger and fewer rings, that deform the membrane more strongly. At the same time, these interactions induce a potential barrier that can suppress further ring coalescence at a separation of about 2\pi times the cylinder radius. These results of the model are in very good agreement with recent in-vitro experiments on the dynamics of FtsZ filaments in cylindrical liposomes. These results emphasize the important role of long-range membrane-mediated interactions in the organization of cytoskeletal elements at the membrane.

N.S.G. thanks the Alvin and Gertrude Levine Career Development Chair, for their support. This research was supported by the BSF (grant No. 2006285).

Roie Shlomovitz
Weizmann Institute

Date submitted: 18 Nov 2009

Electronic form version 1.4