Abstract Submitted
for the MAR10 Meeting of
The American Physical Society

Magnetic order, spontaneous polarization, and magnetoelectric effect in rare earth iron borates: \(\text{Ho}_{1-x}\text{Nd}_x\text{Fe}_3(\text{BO}_3)_4 \)

B. LORENZ, R. P. CHAUDHURY, Y. Y. SUN, TCSUH and Dept. of Physics, University of Houston, C. R. DELA CRUZ\(^1\), Dept. of Physics and Astronomy. University of Tennessee, L. N. BEZMATERNYKH, V. L. TEMEROV, Inst. of Physics, Siberian Div., RAS, C. W. CHU\(^2\), TCSUH and Dept. of Physics, University of Houston — Comprehensive results are presented for the thermodynamic, magnetic, dielectric, and magnetoelectric properties of \(\text{HoFe}_3(\text{BO}_3)_4 \) and the solid solution \(\text{Ho}_{1-x}\text{Nd}_x\text{Fe}_3(\text{BO}_3)_4 \) (\(x = 0.5 \) and 0.75). All compounds undergo a Neél order at \(T_N > 30 \) K and a spin reorientation at \(T_{SR} < 10 \) K. \(\text{HoFe}_3(\text{BO}_3)_4 \) shows a spontaneous electrical polarization below \(T_N \) which decreases below \(T_{SR} \) and in external magnetic fields. \(\text{Ho}_{1-x}\text{Nd}_x\text{Fe}_3(\text{BO}_3)_4 \) exhibits both, a spontaneous polarization and a large positive magnetoelectric effect. The superposition of spontaneous polarization induced by the internal magnetic field and the magnetoelectric polarization in external fields results in a complex behavior of the electrical polarization as function of temperature and/or magnetic fields. The magnetic order of \(\text{HoFe}_3(\text{BO}_3)_4 \) is further explored by neutron scattering experiments in external magnetic fields.

\(^1\)also at: NSSD, Oak Ridge National Laboratory
\(^2\)also at: LBNL Berkeley

B. Lorenz
TCSUH and Dept. of Physics, University of Houston

Date submitted: 19 Nov 2009
Electronic form version 1.4