Quantum Hall ferromagnetic states of a graphene bilayer at $\nu = -1$ JULES LAMBERT, RENÉ CÔTÉ, U. Sherbrooke, YAFIS BARLAS, U. Florida and NHMFL, ALLAN H. MACDONALD, U. Texas at Austin — It was shown recently [1] that Coulomb interaction can lift the degeneracy of the octet of states in Landau level $N = 0$ of a graphene bilayer by forming different kinds of quantum Hall ferromagnetic states. In this talk, we study the sequence of phase transitions induced by an external potential difference, ΔB between the layers at filling factor $\nu = -1$. With ΔB, the system evolves from an interlayer coherent state at small ΔB, to a state with mixed interlayer and inter-orbital coherence at intermediate ΔB, and then into a state with inter-orbital coherence only at larger ΔB. We discuss the nature of the ground state of these three phases and compute the dispersion of their collective excitations in the generalized random-phase approximation. For the inter-orbital coherent state, we develop an effective pseudospin model and explain that the finite wave-vector instability of the pseudospin mode at some critical bias ΔB^*, is due to the presence of a Dzyaloshinskii- Moriya term in the Hamiltonian. This term may drive the system into a spiral state for $\Delta B > \Delta B^*$.