Anisotropic conformation of a side group liquid crystalline polymer in an isotropic small molecule LC solvent

PAUL PIROGOVSKY, ZULEIKHA KURJI, ROHAN HULE, JULIA KORNFIELD, California Institute of Technology — While it is well known that SGLCPs adopt an anisotropic conformation when in a nematic solvent, we were intrigued to observe that anisotropy of the coil conformation can persist above T_{NI}—despite the isotropic state of the solvent and the flexible nature of the backbone. Small angle neutron scattering (SANS) was performed on dilute (1 wt%) solutions of SGLCPs dissolved in deuterated 5CB. The isotropic-nematic transition of the d-5CB was not shifted by this low concentration of polymer. In the absence of a magnetic field, the SANS patterns are isotropic. A magnetic field that is sufficiently weak that it does not perturb the order parameter at $T < T_{NI}$, nor the value of T_{NI}, serves to break symmetry. The anisotropic SANS pattern observed at $T_{NI} + 2$ °C indicates to us that the polymer exerts a local nematic field upon the solvent causing it to take on a nonzero order parameter within the pervaded volume of the coil. The temperature dependence as well as the role of mesogenic side group geometry and molecular weight will also be presented.

Paul Pirogovsky
California Institute of Technology

Date submitted: 20 Nov 2009

Electronic form version 1.4