Manipulation of Electron Beam Propagation by Hetero-Dimensional Graphene Junctions

ZHENGFEI WANG, FENG LIU, Department of Materials Science and Engineering, University of Utah — Manipulation of electron beam propagation in low-dimensional nanostructures is the fundamental process required for quantum information processing and quantum computation in the future. Recently, graphene has been proposed as a candidate system for splitting and focusing electron beam by applying an external field or potential. Here, we demonstrate theoretically a new mechanism for the energy-selective manipulation of electron beam by nanostructured hetero-dimensional graphene junctions (HDGJs) without external field. Electron beam splitting, collimation, and beam-guide can all be realized by designing HDGJs of different dimensionality, size and orientation. Importantly, these different functions can be combined together by pre-designed patterning of multiple HDGJ units in one graphene sheet, making it feasible for large-scale integration of graphene-based quantum devices. Furthermore, we show an effective method for mapping the electron beam propagation in graphene by scanning probe microscopy (SPM), as being done in two-dimensional electron gas (2DEG), which will be very useful for fundamental study of electron transport and quantum phenomena in graphene.

1The work was supported by DOE, CMSN and BES programs

Zhengfei Wang
Department of Materials Science and Engineering, University of Utah

Date submitted: 20 Nov 2009
Electronic form version 1.4