Bent Core Liquid Crystal Polymers and Elastomers RAFAEL VERDUZCO, Rice University, SEUNG HO HONG, JOHN HARDEN, ANTAL JAKLI, SAM SPRUNT, JIM GLEESON — Bent-core liquid crystals (LCs) have a kinked, or bent, molecular shape in contrast to the more common rod-like LCs. Due to their bent molecular shape, bent-core LCs form locally polar clusters, which result in novel LC phases and potentially useful properties such as ferroelectricity. Polymeric bent-core LCs are of particular interest because they can lead to new nanostructured soft materials with confined bent-core LCs. In this work, we investigate the synthesis, nanoscale structure, and physical properties of a variety of bent-core LCs and polymeric bent-core LCs. SAXS reveals the presence of polar clusters over a wide temperature range in the nematic phase for all materials studied, including bent-core side-group LC polymers and bent-core LC elastomers. The presence of locally polar clusters can account for the unexpected physical properties in nematic bent-core LCs, such as enhanced flexoelectricity. Direct flexoelectric measurements on pure bent-core LCs and swollen LCEs show that nematic bent-core materials have a flexoelectric coupling three orders of magnitude larger than calamitic LCs. Nematic clusters in bent-core LCs represent an unexpected and potentially useful phenomenon for building responsive LC devices.

1We acknowledge the support and facilities at DOE’s CNMS at ORNL

Rafael Verduzco
Rice University

Date submitted: 20 Nov 2009

Electronic form version 1.4