Abstract Submitted
for the MAR10 Meeting of
The American Physical Society

In situ synchrotron measurements of surface compensation mechanisms in La$_{0.6}$Sr$_{0.4}$Co$_{0.2}$Fe$_{0.8}$O$_{3-\delta}$ thin films TIM FISTER, STEPHAN HRUSZKEWYCZ, DILLON FONG, JEFFREY EASTMAN, PAUL FUOSS, Argonne National Laboratory, HUI DU, PAUL SALVADOR, Carnegie Mellon University — With its desirable combination of thermal stability, catalytic activity, and electronic and ionic conductivity, La$_{0.6}$Sr$_{0.4}$Co$_{0.2}$Fe$_{0.8}$O$_{3-\delta}$ (LSCF) is rapidly becoming the standard cathode material for solid oxide fuel cells (SOFCs). Prior electrical measurements have isolated oxygen reduction at the cathode as a primary rate-limiting step in the performance of SOFCs. To better understand the nature of oxygen reduction at the high temperature, atmospheric oxygen partial pressure (pO2) conditions of a working SOFC, we study epitaxial LSCF thin films grown on (001)p-oriented NdGaO$_3$ and SrTiO$_3$ using in situ x-ray scattering and spectroscopy methods. We find that at sufficiently high temperatures, LSCF forms surface reconstructions at atmospheric pO2 levels. Using grazing-incidence spectroscopy methods, we also find that strontium segregates to the surface and that the minority B-site cation, cobalt, responds to changes in pO2 and temperature. We discuss the interplay between these changes in surface composition and structure and its implication on oxygen reduction in SOFCs.

Tim Fister
Materials Science Division, Argonne National Laboratory

Date submitted: 20 Nov 2009

Electronic form version 1.4