Insulating state of a graphene edge in the spin-polarized quantum Hall effect regime1 MAXIM KHARITONOV, Materials Science Division, Argonne National Laboratory — The edge of an undoped graphene in the quantum Hall effect regime that supports spin-polarized bulk and gapless counter-propagating edge states is studied using one-dimensional bosonization technique. The attractive long-range Coulomb interactions between electron and hole modes result in a strong tendency towards excitonic pairing with the associated spin-density wave structure. In the absence of backscattering, however, the edge excitations remains gapless, no order is formed, and the edge remains metallic. Backscattering on random spin-orbital defects that involves spin flips leads to the localization of the edge states. The localization effects can be significantly enhanced by the Coulomb interactions.

1Work supported by the U.S. DOE, Office of Science, under Contract No. DE-AC02-06CH11357.