Finite doping signatures of the Mott transition in the two-dimensional Hubbard model

GIOVANNI SORDI, Departement de physique and RQMP, Universite de Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1

The evolution from the conventional metal at high doping to the Mott insulator at zero doping remains a central problem in physics of copper-oxide superconductors. Here we solve the cellular dynamical mean-field equations [1,2] for the two-dimensional Hubbard model on a plaquette with continuous-time quantum Monte Carlo [3,4]. The normal-state phase diagram as a function of temperature T, interaction strength U, and filling n reveals that, upon increasing n towards the Mott insulator, there is a surface of first-order transition between two metals at nonzero doping. That surface ends at a finite temperature critical line originating at the half-filled Mott critical point [5,6]. There is a maximum in scattering rate associated with this transition. These findings suggest a new scenario for the normal-state phase diagram of the high temperature superconductors. The criticality surmised in these systems can originate not from a $T=0$ quantum critical point, nor from the proximity of a long-range ordered phase, but from a very low temperature transition between two types of normal state metals at finite doping. The influence of Mott physics extends well beyond half-filling.