Striped Multiferroic Phases in Narrow Bandwidth Hole-Doped Manganites

SHUHUA LIANG, Univ. of Tennessee, ORNL, SHUAI DONG, Southeast University, China, CENGIZ SEN, UTK, ORNL, MARIA DAGHOFER, IFW Dresden, ELBIO DAGOTTO, UTK, ORNL — A novel phase with diagonal charge stripes and a complex spin arrangement that allows for ferroelectricity to develop has been recently reported in a model for hole-quarter-doped manganites (S. Dong et al., Phys. Rev. Lett. 103, 107204 (2009)). The study of this “spin-orthogonal stripe” (SOS) phase is here generalized to other hole doping fractions \(x = 1/N \) \((N = 3, 5, 6, \ldots) \), to search for analogous multiferroic states. In this effort, the two-orbital double-exchange model for manganites is studied, employing variational, Monte Carlo, and zero temperature optimization techniques. The phase diagrams obtained by varying the electron-lattice and superexchange couplings also contains exotic \(C_xE_1-x \) phases. A systematic procedure to construct new \(C_xE_1-x/SOS_x \) phases is discussed. Both the Dzyaloshinskii-Moriya interaction and exchange-striction effect may work in these \(C_xE_1-x/SOS_x \) phases, giving rise to ferroelectricity. In addition, these SOS\(_x/C_xE_1-x\) phases can be extended into many other similar states, with (almost) degenerate energies but different multiferroic properties.

\(^1\)This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division.

Shuhua Liang
Univ. of Tennessee, ORNL

Date submitted: 23 Nov 2010

Electronic form version 1.4